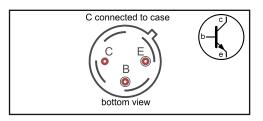
General Purpose Type

Features:

for

■ High temperature characterization■ High dc-beta at 200mA

Low Power Applications


■ Full switching-time characterization at

200mA

The 2N1700 is a hometaxial-base, silicon n-p-n power transistor intended for a wide variety of applications in industrial and military equipment. The device is particulary useful in power-switching circuits such as in dc-to-dc converters, choppers, solenoid and relay controls; in oscillator, regulator, and pulse amplifier circuits; and as class A and class B push-pull audio and servo amplifiers.

The 2N1700 is supplied in the JEDEC TO-39 hermetic package.

## **Terminal Designations**



**JEDEC TO-39** 

Source: RCA SSD-220C (1981)

## MAXIMUM RATINGS, Absolute-Maximum Values:

| $V_{CBO}$                                                                        | 60          | V  |
|----------------------------------------------------------------------------------|-------------|----|
| $V_{CEV}^{(SUS)}$ (V <sub>EB</sub> = 1.5Volts)                                   | 60          | V  |
| V <sub>CEO</sub> (SUS)                                                           | 40          | V  |
| V <sub>EBO</sub>                                                                 | 6           | V  |
| I <sub>C</sub>                                                                   | 1           | А  |
| I <sub>B</sub>                                                                   | 0.75        | А  |
| P <sub>T</sub> at case temperature of 25°C                                       | 5           | W  |
| $T_{stg}T_{J}$                                                                   | -65 to +200 | °C |
| T <sub>L</sub> At distance ≥ 1/32 in.<br>(0.8mm) from seating plane for 10s max. | 255         | °C |

**Electrical Characteristics,** at Case Temp.  $(T_C)$  = 25°C unless otherwise specified

| SYMBOL                            | TEST CONDITIONS |                 |                  |                | T              |    |                    |      |          |  |
|-----------------------------------|-----------------|-----------------|------------------|----------------|----------------|----|--------------------|------|----------|--|
|                                   | VOLTAGE<br>V dc |                 | CURRENT<br>mA dc |                | LIMITS         |    | UNITS              |      |          |  |
|                                   | V <sub>CB</sub> | V <sub>CE</sub> | V <sub>EB</sub>  | I <sub>c</sub> | I <sub>B</sub> | IE | Min                | Max  |          |  |
| I <sub>CBO</sub>                  | 30              |                 |                  |                |                | 0  | -                  | 75   |          |  |
| T <sub>c</sub> =150°C             | 30              |                 |                  |                |                | 0  | -                  | 1000 | μA       |  |
| I <sub>EBO</sub>                  |                 |                 | 6                | 0              |                |    | -                  | 25   | μA       |  |
| V <sub>CEV</sub>                  |                 |                 | 1.5              | 0.5            |                |    | 60                 | -    | v        |  |
| V <sub>CEO</sub> (SUS)            |                 |                 |                  | 50             | 0              |    | -                  | -    |          |  |
| V <sub>BE</sub>                   |                 | 4               |                  | 100            |                |    | -                  | 2    | V        |  |
| V <sub>CE</sub> (sat)             |                 |                 |                  | 200            | 10             |    | -                  | -    | V        |  |
| h <sub>FE</sub>                   |                 | 4               |                  | 100            |                |    | 20                 | 80   |          |  |
| h <sub>fe</sub>                   |                 | 4               |                  | 5              |                |    | 40 Typ.            |      |          |  |
| r <sub>CE</sub> (sat)             |                 |                 |                  | 100            | 10             |    | -                  | 10   | Ω        |  |
| C <sub>ob</sub>                   | 40              |                 |                  |                |                |    | 150 Typ.           |      | pF       |  |
| T <sub>1</sub>                    |                 |                 |                  |                |                |    | 10 Typ.            |      | ms       |  |
| f <sub>αb</sub>                   | 28              |                 |                  | 5              |                |    | 1.5 Typ.           |      | MHz      |  |
| t <sub>d</sub> •                  |                 |                 |                  |                |                |    | 0.2 Typ.<br>1 Typ. |      |          |  |
| t <sub>r</sub> •                  |                 |                 |                  |                |                |    |                    |      | μs       |  |
| t <sub>s</sub> •                  |                 |                 |                  |                |                |    | 0.6 Typ.           |      |          |  |
| t <sub>f</sub> •                  |                 |                 |                  |                |                |    | 1 Typ.             |      |          |  |
| $R_{\scriptscriptstyle{	heta}JC}$ |                 |                 |                  |                |                |    | -                  | 35   | — °C/W ∣ |  |
| $R_{\theta JFA}$                  |                 |                 |                  |                |                |    | -                  | 200  |          |  |

Note •:  $I_C = 200$ mA,  $I_{B1} = 20$ mA,  $I_{B2} = -85$ mA

Source: RCA SSD-220C (1981)

## **Terms and Symbols**

- common-base output capacitance

- gain-bandwidth product (unity-gain frequency for devices in which gain roll-off has a -1 slope)

 $\boldsymbol{f}_{\alpha b}$ - base (alpha) cutoff frequency

- dc forward-current transfer ratio

 $\mathbf{h}_{\text{fe}}$ - common-emitter, small-signal, short-circuit, forward-current transfer ratio

- magnitude of common-emitter, small-signal, short-circuit, forward-current transfer ratio |h<sub>fe</sub>|

- continous collector current  $I_{c}$ 

- peak collector current  $I_{CM}$ 

- collector-cutoff current with specified resistance between base and emitter  $I_{CER}$ 

- collector-cutoff current with specified circuit between base and emitter  $I_{CEX}$ 

- continous base current

- emitter-cutoff current, collector open  $I_{EBO}$ - collector-cutoff current, emitter open I<sub>CBO</sub>

I<sub>S/b</sub>
P<sub>T</sub>
r<sub>CE</sub>(sat)
R<sub>BE</sub> - forward-bias, second break-down collector current - transistor dissipation at specified temperature - dc collector-to-emitter saturation resistance - external base-to-emitter resistance  $R_{\theta JC}$ - thermal resistance, junction-to-case - thermal resistance, junction-to-free air

 $R_{\theta JFA}$ - delay time  $t_{d}$ - rise time - fall time

- case temperature - storage temperature

t<sub>r</sub>
t<sub>f</sub>
T<sub>C</sub>
T<sub>stg</sub>
T<sub>J</sub>
T<sub>L</sub>
V<sub>CBO</sub> - operating (junction) temperature - lead temperature during soldering - collector-to-base voltage, emitter open  $\begin{array}{lll} V_{\text{CEO}} & -\text{ collector-to-emitter voltage, pase open} \\ V_{\text{CEO}}^{\text{(sus)}} & -\text{ collector-to-emitter sustaining voltage, base open} \\ & -\text{ collector-to-emitter sustaining voltage with specification} \end{array}$ 

V<sub>CER</sub>(sus) - collector-to-emitter sustaining voltage with specified resistance between base and emitter

- emitter-to-base voltage, collector open  $\rm V_{\rm EBO}$ 

 $V_{BE_{\mathfrak{g}}}$ - base-to-emitter voltage

 $V_{CE}^{-sat}$ - collector-to-emitter saturation voltage

- torque

- conduction angle

Source: RCA SSD-220C (1981) www.web-bcs.com